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Transition between curved and angular textures in binary fluid convection

A. La Porta, K. D. Eaton, and C. M. Surko
Department of Physics, University of California, San Diego, La Jolla, California 92093
(Received 25 September 1995)

We report a transition from a curved texture to an angular texture in Rayleigh-Bénard convection
in a mixture of ethanol and water. The transition occurs as the Rayleigh number is reduced from
a high value and approaches the traveling-wave branch and is observed at negative values of the
separation ratio in fluid mixtures, but not in a pure fluid. We show that this transition may be
understood in terms of a generalization of the Swift-Hohenberg free energy functional. A large
increase in wave-number rigidity is observed as the traveling-wave transition is approached.

PACS number(s): 47.54.+r, 47.20.Lz, 47.27.Te

I. INTRODUCTION

Pattern formation in nonequilibrium systems is of fun-
damental interest because no general theory is known
which governs these systems and because, in many in-
stances, striking similarities are observed between pat-
terns produced by different physical mechanisms, sug-
gesting that common organizing principles are at work
[1,2]. The search for such universal aspects of patterns
is one of the primary goals of the field. Rayleigh-Bénard
convection has been one of the most widely studied pat-
tern forming systems because the physical mechanisms
involved are well understood, precise control of exper-
imental parameters is possible, and a great variety of
phenomena can be observed and studied. In this paper,
we describe a previously unreported transition in the tex-
ture of convection patterns. This transition, which occurs
in convection in a binary mixture, is from a curved tex-
ture, which is generic to Rayleigh-Bénard convection, to
an angular texture, in which patches of straight rolls are
connected by sharp domain boundaries. The formation of
the angular texture is coincident with the transition from
stationary convection to traveling-wave convection in the
mixture. We show that this transition can be described
by defining a free energy functional that is minimized by
the selected pattern, and whose form is a generalization
of that calculated from the Swift-Hohenberg model [3,4].

The angular patterns that are observed are very simi--

lar to the labyrinth patterns observed in ferromagnetic
garnet films [5], and so this transition and its mathemat-
ical description appear to bridge the gap between typical
convection patterns and the labyrinth patterns. In ad-
dition, the formation of the angular texture, which does
not occur in the standard Swift-Hohenberg model, gives
additional information about the nature of the bifurca-
tion from stationary to traveling waves.

II. TRAVELING-WAVE AND STATIONARY
CONVECTION IN FLUID MIXTURES

Rayleigh-Bénard convection in a binary mixture is pri-
marily studied as a system that supports oscillatory and
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traveling-wave (TW) convection. In fluid mixtures of
ethanol and water, there is a strong Soret effect in which
the diffusion of ethanol in the fluid is driven by a tem-
perature gradient. For ethanol concentrations of less
than 26%, the Soret coefficient is negative, and ethanol is
driven towards the colder regions of the convection cell.
As a result, when the convection cell is heated from be-
low, the accumulation of ethanol at the top of the cell
tends to stabilize the fluid layer against thermal convec-
tion. This competition between thermal and concentra-
tion effects results in a suppression of the onset of con-
vection compared with a pure fluid and, depending on
the system parameters, oscillatory convection, traveling-
wave convection, or stationary overturning convection
(SOC) can occur [2,6].

Binary fluid convection is described by four dimen-
sionless numbers. The forcing parameter is the Rayleigh
number,
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where « is the thermal expansion coefficient, g is the ac-
celeration of gravity, x is the thermal diffusion constant,
and v is the viscosity. It is convenient to use the reduced
Rayleigh number, r = Ra/1708, which is normalized to

the onset of convection in a pure fluid. The Prandtl num-
ber,

Pr = ;, (2)
determines the onset of secondary instabilities and influ-
ences the nature of the patterns. The separation ratio,

¢=c(1—c)5t§, (3)

where S; is the Soret coeflicient and 3 is the concentra-
tion expansion coefficient, indicates the extent to which
the ethanol concentration of the fluid layer is stratified in
response to a temperature gradient, and the Lewis num-
ber,
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; (4)
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where D, is the mass diffusion coefficient for ethanol,
gives the ratio of the time scales for mass and thermal
diffusion.

In the ethanol-water mixture, £ ~ 1072, so there is a
strong separation of the diffusive time scales and within
experimental accuracy, a TW state is observed for all
¥ < 0. In Fig. 1, the bifurcation diagram is sketched
for a pure fluid and for fluid mixtures with two different
values of 1. The primary results presented below were
obtained using a mixture of 8% ethanol (by weight) in
water at an average temperature of 26 °C, which has a
large negative separation ratio, ¥ = —0.24, and for which
Pr = 10.5. For this value of v, the onset of convection is
strongly subcritical, and the first bifurcation, at r.,, is a
Hopf bifurcation to a state of oscillatory convection that
grows until a large amplitude state of traveling-wave con-
vection is reached. If the Rayleigh number is increased
further, the traveling-wave velocity goes to zero at r*,
and if the Rayleigh number is decreased, TW convection
persists until a saddle node bifurcation is encountered
at r;. The texture transition studied below occurs above
r*, where stationary overturning convection (SOC) is ob-
served. At these high values of the Rayleigh number, the
variation in ethanol concentration is strongly suppressed
by the vigorous convective flow, and previous work on
two-dimensional convection indicated that in this regime,
the mixture behaves like a pure fluid [7-9]. The present
experiment suggests that concentration effects are still
important above 7* in the presence of three-dimensional
flow effects, which are important near defects in the pat-
tern. For comparison, data is also shown that was ob-
tained from a mixture of 1% ethanol in water, for which
1 = —0.06 and Pr = 6.5. The behavior of the 1% mix-
ture is qualitatively the same as that of the 8% mixture,
although the range over which TW convection is observed
is much smaller and the TW state has a smaller ampli-
tude (see Fig. 1).

III. OBSERVATION OF THE TRANSITION

The patterns are observed in a cylindrical convection
cell with a height of 0.4 cm and a radius of 10.5 cm.

Pure Fluid
8% Mixture

1% Mixture

Amplitude

n
1 re leo r

Reduced Rayleigh Number

FIG. 1. Schematic bifurcation diagram for convection in
pure water and in binary mixtures containing 8% ethanol by
weight (for which ¢ = —0.24) and 1% ethanol by weight (for
which ¢ = —0.06). For each mixture the regime of TW con-
vection is indicated by a thick line, and the bifurcation points
are indicated for the 8% mixture.

The upper boundary is a sapphire disk that is main-
tained at 25°C by a temperature regulated flow bath,
and the lower boundary is a solid silicon disk that is
electrically heated to produce a temperature difference of
2-5°C. The convection cell is visualized through the up-
per boundary by a white light shadowgraph and convec-
tion patterns are recorded using a charge-coupled-device
camera. Images with a spatial resolution of 480 x 480 are
acquired at eight-bit accuracy using a personal computer
frame grabber and stored in binary computer files.

In order to measure the local properties of the con-
vection patterns, the digitized shadowgraph images are
divided by a reference image of the convection cell, below
the threshold of convection, in order to compensate for
nonuniformity of illumination. The image is then convo-
luted with a Gaussian function having a standard devia-
tion equal to about half of the width of a convection roll
in order to suppress broadband noise. The gradient of
the filtered images is perpendicular to the roll bound-
aries, and can be used to construct a vector field, r:i,
that is normal to the local roll structure. The curvature
is calculated directly from the normal vector field using
c=V- 1:i, and the wavelength is determined with sub-
pixel resolution by scanning the image along the normal
vector and finding the distance between the nearest peak
and trough. These algorithms are similar to those used
by Heutmaker et al. in a study of pure fluid convection
patterns [10].

The transition is observed as follows. A suitable pat-
tern is first created by allowing a TW state to develop,
then freezing the pattern by suddenly setting r well above
r*. The pattern is then allowed to anneal for several days.
There is an initial stage of the evolution in which the pat-
tern changes rapidly, before relaxing toward a more or-
dered, quasistable configuration, although slow but per-
sistent movement of the pattern continues to occur [11].
The measurements described below are made during this
latter period of slow evolution, over a time interval that
is short compared with the characteristic pattern evolu-
tion time. The nature of the resulting pattern, shown
in Fig. 2, is largely determined by focus singularities at
the edges of the cell, which create large areas of nearly
concentric rolls, and by concave disclinations embedded
in the pattern [12].

In Fig. 2(a), the convection pattern is shown at a
Rayleigh number of 3.7. As the Rayleigh number is grad-
ually reduced to a value of 1.7, just above the TW transi-
tion at 7*, the broad areas of concentric rolls, character-
ized by fairly uniform curvature, break up into domains
of straight rolls connected by sharply angled sections, as
shown in Fig 2(b). The preferred wave number at r = 1.7
is slightly larger than at 7 = 3.7, and several new rolls are
created, either emerging from the foci, or being created
by the climb of dislocations, but the final state is topo-
logically equivalent to the initial state. The local curva-
ture, V - 7, shown in Figs. 2(c) and 2(d), clearly reveals
the transition between the curved texture and the angu-
lar texture, in which the boundaries between domains of
straight rolls appear as bright lines of intense curvature.
The local wave-number maps in Figs. 2(e) and 2(f) reveal
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dark patches of wave-number frustration that are visible
near the embedded defects at » = 3.7, which disappear
at r = 1.7.

IV. FREE ENERGY DESCRIPTION

A rigorous treatment of this transition would have to
be described in terms of the stability of instability of the
various roll configurations. A more workable framework
is provided by the idea of a free energy functional which
determines the preferred texture of the pattern. In anal-
ogy with equilibrium thermodynamics, various attributes
of the texture are assigned a free energy, and the texture
with the lowest value of the total free energy is preferred.
In general, there is no reason to believe that such a free
energy can be found to describe a nonequilibrium pat-
tern, but in cases such as stationary convection, where

the dynamics of the patterns is basically relaxational,
such a description has been successful [10]. Adopting
this approach, we assume that the free energy functional
may be written as the sum of three terms,

F = fdefect + fboundary + fb'u.lk- (5)

In our case, the boundary and defect terms need not
be considered, because the defect structure and the roll
orientation near the boundary are not changed by the
transition. A description of the transition must therefore
be found in the bulk term.

We proceed by analogy with the Swift-Hohenberg (SH)
model, which is widely used to describe stationary con-
vection. In this system, the partial differential equation
is defined in terms of a functional derivative of F,

o _ OF

FIG. 2. Convection pattern at (a) r = 3.7
and (b) r = 1.7, the local curvature at (c)
r = 3.7 and (d) » = 1.7 (white indicates
the maximum curvature) and the local wave
number at (e) » = 3.7 and (f) » = 1.7 (white
indicates the maximum wave number).
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where F is a functional of the order parameter, ¢, and
is defined by

f=_/dA(£—’/’i—[(qouv?)«p]z). (1)

Evaluation of the functional derivative gives the familiar
Swift-Hohenberg equation,
oY

Gr === (@° + V)’ (8)

Within the context of this model, is has been proven that

& [Fwaaso, )

so that the functional F always decreases during evolu-
tion under Eq. (6) and plays the roll of a free energy. In
this case, a stable pattern must satisfy the condition that
F is minimum, and convection texture can be predicted
by looking for configurations that optimize F. In the
limit that the amplitude of the pattern is slowly vary-
ing, it is possible to recast Eq. (7) in a form that is very
convenient for application to experimental patterns. By
making use of the substitution,

¥ =|A| e + c.c.
V6 = (g0 +89) 7,

(10)
(11)

it was shown by Cross [3] that the bulk free energy takes
the form

Frut = e/dA [}1 (V-#7) + (Jq)z].

This expression, whose validity has been established for
pure fluid convection patterns [10], is especially attractive
because the free energy is separated into individual terms
depending on curvature and wave number.

The angular transition is essentially a transition from a
state in which curvature is optimized (the curved texture)
to a state in which the wave number is optimized (the
angular texture), and it could be interpreted as a transi-
tion from a curvature-dominated free energy to a wave-
number-dominated free energy. Adopting this ansatz, we
depart from the SH model by assuming that the bulk free
energy is composed of the curvature and wave number
terms of the SH model, but that the coefficients can be
varied independently. The two terms are

(12)

Fourvature = A / (6’ -ﬁ)z dA = AL, (13)

Fwave number = B / (k - ko)2 dA = BI. (14)
The integrals I, and I, are the curvature and wave-
number frustration, and A and B are unknown con-
stants which in the SH model would satisfy A = B/4 =
(r — 1)/4. This modification of the free energy is not
consistent with the simple structure of the SH equation,
Eq. (8) above, but is introduced in an attempt to capture
the trade-off between curvature and wave number that is
observed in the transition.

Considering these two terms, the effect of I} is to re-
ward the pattern for minimizing the rms deviation of
its wave number from the optimum value. Since the
observed pattern has adequate mechanisms for wave-
number adjustment, we can accurately estimate this
value by calculating the second moment of the measured
wave-number distribution. The effect of I, is more sub-
tle. Since the total winding angle of each roll is fixed by
its perpendicular attachment to the boundary, the inte-

— A
gral of V-7 along each roll is the same in the angular and
curved textures, and equal to this angle. Under this con-

straint, the integral of (?7 -7)? is minimized for uniform
curvature along each roll. The presence of concave discli-
nations in the pattern sets up a competition between the
two terms. If the rolls remain smoothly curved in the
vicinity of the defects, a substantial wave-number defor-
mation is created, as illustrated on the right-hand side of
Fig. 3. To eliminate the wave-number deformation, the
rolls must crawl into the corners created by the defect,
as shown on the left-hand side of Fig. 3, producing lines
of intense curvature emanating from the defect [13].

In Figs. 4(a) and 4(b), the distribution of the curva-
ture and wave number are shown for a single roll both
in the curved texture at » = 3.7, and in the angular tex-
ture at » = 1.7. In the curved texture, the curvature
is broadly distributed below 0.1, reflecting the approxi-
mately circular shape of the rolls. In the angular state,
the peak has shifted to zero curvature, reflecting the ar-
eas of straight rolls, and a long tail at large curvature is
present, reflecting the narrow lines of intense curvature.
Averaged over the entire pattern, the mean value of the
curvature is conserved to within 10%, but the mean value
of I, increases by a factor of 2.

Considering the wave-number distribution in Fig. 4(b),
the broad distribution observed in the curved state nar-
rows substantially and shifts upward in the angular state.
Averaged over the entire pattern, I} decreases by a factor
of 2.5. Evidently, in the angular state, the pattern has
chosen to optimize the wave number at the expense of
curvature.

In Fig. 5(a), we show the two frustration integrals, I,
and I, as measured during a different run on the same
pattern shown in Fig. 2. In this case, r was gradually
increased from 1.7 to 3.7 during a period of 60 min. and
the frustration integrals were evaluated each minute. It
takes about 5 min. for the pattern to react to a change in
T, so there is probably an offset of 0.2 in r due to slewing
in these curves. The necessity of completing the protocol

Angular Curved

Texture Texture

FIG. 3. Illustration of the deformation of rolls near a con-
cave disclination.
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FIG. 4. Histograms of (a) curvature and (b) wave number.
The data shown are integrated over a typical roll pair for both
curved (r = 3.7) and angular (r = 1.7) states. Distances are
scaled by the cell height.

before the defect structure of the pattern has changed
prevents the use of a slower slewing rate.

Using the dependence of I. and I on the Rayleigh
number, it is possible to estimate the ratio of the two co-
efficients introduced in Egs. (13) and (14) as follows. It
has been confirmed that the curved-to-angular transition
is reversible and that the evolution of the roll contours
from curved texture to angular texture is a one parame-
ter family of curves. Therefore, the free energy functional
can be considered to be a simple function of some geo-
metrical deformation parameter, and at a given Rayleigh
number, this free energy function is minimized for the
observed deformation. In terms of this as yet undefined
deformation parameter, v, we can write the bulk free en-
ergy as

Foulk = AIC(I/) + BIk(V). (15)

By applying the condition that Fp,;; is minimized for
some value of the deformation, vg, we obtain

o= S = Ok (), (16)

B ov oI, OI,
regardless of how we parameterize the deformation. The
equation specifies the value of A/B, which is required
for Fpuik to attain its minimum at v9. Since there is a
one-to-one mapping between the observed patterns and
the Rayleigh number, v = v (r), and so r is a suitable
deformation parameter. The ratio A/B can therefore
be found as a function of r by differentiating the two
curves shown in Fig. 5(a) with respect to r and divid-
ing. The result of this calculation is shown in Fig. 5(b).
As expected, the analysis indicates a smooth transition
from a curvature-dominated free energy at high Rayleigh
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FIG. 5. (a) Curvature and wave-number frustration inte-
grals, I. and Ix, are shown as a function of r. (b) The ratio
A/B calculated from the data in (a).

number to a wave-number-dominated free energy at low
Rayleigh number. The value of A/B attains the SH value
of 1/4 at » = 2.5, and becomes equal to zero at r = 2.0
(or 7 = 1.8, if the slewing shift is included), indicating
a dramatic increase in the wave-number rigidity in the
angular state.

The transition described above can be described by the
bulk energy term because the defect structure is stable for
1.7<r<3.7. At such high Rayleigh numbers, the evolu-
tion of the defect structure probably cannot be described
by a free energy. The separation of time scales between
the defect evolution, which takes place over many hours,
and the bulk deformation of the pattern, which occurs
over a few minutes, make it possible to isolate the bulk
properties. In effect, the bulk deformation plays the roll
of a fast slave mode to the more slowly moving defect
structure.

V. ASSOCIATION OF THE ANGULAR
TRANSITION WITH THE TW STATE

In the 8% ethanol mixture, the transition to the an-
gular texture occurred as r approached r*, the Rayleigh
number where the transition to TW convection occurs.
In order to confirm that the angular state is in fact related
to the TW state, experiments were done in a 1% mixture
and in pure water. In the 1% mixture ¥ = —0.06, and
the transition to TW convection occurs at a much lower
value of r at a smaller convection amplitude (see Fig. 1).
The Prandtl number of the 1% mixture is equal to 6.5,
which is not significantly different from pure water. Data
taken in the 1% mixture is shown in Fig. 6. The tex-
ture of the convection pattern remains curved down to
r = 1.4, shown in Fig. 6(a), but the transition to the an-
gular texture occurs r = 1.2, which is just above 7* in the
1% mixture. The interpretation of the transition is not
as clear in this case because it occurs in a small ampli-
tude state near onset, where the defect structure is much
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FIG. 6. Patterns in a 1% ethanol-water mixture at (a)
r = 1.4, and (b) » = 1.2, and the local curvature at (c)
r =14, and (d) r =1.2.

more plastic. In this case, the concave disclinations that
cause wave-number frustration form in the course of the
transition to the angular texture. This suggests that the
defect contribution to the free energy varies significantly
with r, making it impossible to separate bulk from defect
effects.

Finally, the experiment was repeated with pure water,
which does not support TW convection, with the results
shown in Fig. 7. The pure fluid manifests a curved tex-
ture in Fig. 7(a), which is identical to that seen in the
1% mixture, but as the Rayleigh number is gradually re-
duced, there is no hint of an angular texture, even as r
goes below onset and the pattern fades away. Figure 7(b)
shows the persistence of the curved texture at » = 1.05,
where the amplitude of convection is so small as to make
visualization difficult.

The fact that the angular texture is associated with
the transition to TW convection is strongly supported
by this series of experiments. The transition occurs as
r — r* at two different values of ¥, even though the value
of r* is very different in the two cases. In addition, the
angular texture does not occur in pure water, which has a
Prandtl number identical to that of the 1% mixture and
only differs from the mixture in that it does not support
a TW convection state.

There is experimental evidence that the transition does
result from a competition between wave number and cur-
vature frustration, and not from an intrinsic instability
of curved rolls. In the 8% mixture, regions of curved rolls
have been observed to coexist with the angular texture
in cases where there are regions of the pattern that are
free from disclinations and other defects that bring about
a competition between curvature and wave-number frus-
tration. Apparently, even in the angular texture curved

FIG. 7. Patterns in pure water at (a) » = 1.4, and (b)
r = 1.05, and the local curvature at (c) » = 1.4, and (d)
r = 1.05.

rolls are preferred over angular rolls unless the wave-
number optimization suffers.

VI. NUMERICAL OPTIMIZATION OF THE
FREE ENERGY

In Sec. IV above, the relative weight of the wave-
number and curvature frustration terms in the effective
free energy was calculated, based on the assumption that
the two terms that are present in the SH model are suffi-
cient to capture the essence of the transition. It would be
of interest to confirm that the transition does follow from
this form of the free energy functional by searching for the
minimum energy pattern as a function of A/B. This is
not practical, because the convection pattern is a continu-
ous field having an infinite number of degrees of freedom,
and a discrete representation of the pattern with suffi-
cient resolution to represent the transition would require
~ 105 degrees of freedom. However, if the convection
pattern is represented as a series of lines corresponding
to the roll boundaries, an adequate representation of the
pattern may be obtained from a much smaller number
of degrees of freedom. It is then possible to search for a
configuration that minimizes the free energy functional,
which can easily be evaluated in the simplified system.

In order reproduce the transition, the simplest possible
geometry was chosen; that of a single concave disclina-
tion at the center of a triangular convection cell. The
pattern is composed of concentric rolls centered on the
three vertices of the triangle, and the required perpen-
dicular attachment of the rolls to the cell boundary is
easily fulfilled, so that the only source of frustration in
the pattern is the disclination at the center. The roll con-
tours surrounding each of the three vertices are specified
in polar coordinates by 32 points, so that an arbitrary



576 A.LA PORTA, K. D. EATON, AND C. M. SURKO 53

(@) ()

FIG. 8. Roll contours of the minimum energy configura-
tions of the postulated free energy (a) with A/B = 0.1, and
(b) with A/B = 10.

roll configuration may be specified, except for the con-
straint that the rolls are attached to the cell boundary.
Efficient searching of the configuration space is accom-
plished by using a simplex search algorithm to vary the
Fourier modes of the roll contour functions, R(#), in-
cluding a zero-frequency term that specifies each roll’s
mean distance from the vertex. A variety of other search
strategies were tried that converged to the same optimum
configuration with varying degrees of efficiency.

In Fig. 8(a) the optimum pattern configuration is
shown for A/B = 0.1, which corresponds to the angular
texture, and in Fig. 8(b) the configuration is shown for
for A/B = 10, which corresponds to the curved texture.
The roll contours in the simulations of both the angular
texture and the curved texture are similar in appear-
ance to the experimental patterns, with lines of intense
curvature in Fig. 8(a) and broad regions of even curva-
ture in Fig. 8(b). A detailed comparison of the computer
simulation with the observed contours reveals small dis-
crepancies in the roll shapes, particularly in the curved
texture. These discrepancies can be reduced by adding
a small term proportional to (g)* to the wave-number
frustration integral.

VII. CONCLUSION

In this paper, we have reported a reversible transition
between a curved texture, generic to Rayleigh-Bénard
convection, and an angular texture, in which the pattern

breaks up into geometric domains of straight rolls. By
isolating the bulk properties of the pattern and intro-
ducing an effective free energy containing separate terms
sensitive to wave-number and curvature, we have been
able to describe the transition in terms of a competition
between wave-number and curvature optimization. The
angular texture seems to be closely related to the dis-
tinctive geometric domains of straight rolls that are ob-
served in stripe domains in ferromagnetic garnets, which
suggests that the primary difference between the stripe
domain patterns and conventional convection patterns
is an extraordinary wave-number rigidity in the angular
stripe domain patterns. It would be interesting to see if
the wave-number distribution in the stripe domain pat-
terns is in fact narrower than would be expected from
the generic Swift-Hohenberg model.

The transition in texture appears to be closely asso-
ciated with the transition between stationary convection
and traveling-wave convection. In the stationary convec-
tion regime, the Swift-Hohenberg equation is thought to
be applicable, whereas several complex generalizations
of the Swift-Hohenberg equation have been proposed as
models for traveling-wave convection [14,15]. The pres-
ence of the angular texture near the transition may pro-
vide additional information about the bifurcation to trav-
eling waves, about which very little is known. Unfortu-
nately, the modification of the Swift-Hohenberg free en-
ergy functional that we have introduced upsets the local
rotational invariance of the model, and therefore it is not
straightforward to derive a partial differential equation
from this functional. Nevertheless, the requirement that
an angular texture is present at the bifurcation point may
constrain the structure of traveling-wave models.
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FIG. 2. Convection pattern at (a) r = 3.7
and (b) r = 1.7, the local curvature at (c)
r = 3.7 and (d) » = 1.7 (white indicates
the maximum curvature) and the local wave
number at (e) r = 3.7 and (f) r = 1.7 (white
indicates the maximum wave number).



FIG. 6. Patterns in a 1% ethanol-water mixture at (a)
r = 1.4, and (b) » = 1.2, and the local curvature at (c)
r=14,and (d) r = 1.2.



FIG. 7. Patterns in pure water at (a) r

r = 1.05, and the local curvature at (c) r
r = 1.05.



